Engineering of Band Gap in Metal−Organic Frameworks by Functionalizing Organic Linker: A Systematic Density Functional Theory Investigation
نویسندگان
چکیده
A systematic investigation on electronic band structure of a series of isoreticular metal−organic frameworks (IRMOFs) using density functional theory has been carried out. Our results show that halogen atoms can be used as functional groups to tune not only the band gap but also the valence band maximum (VBM) in MOFs. Among halogen atoms (F, Cl, Br, I), iodine is the best candidate to reduce the band gap and increase the VBM value. In addition, it has been found that for the antiaromatic linker DHPDC (1,4-dihydropentalene-2,5-dicarboxylic acid) the energy gap is 0.95 eV, which is even lower than those calculated for other aromatic linkers, i.e., FFDC (furo[3,2-b]furan-2,5-dicarboxylic acid) and TTDC (thieno[3,2-b]thiophene-2,5-dicarboxylic acid). By analyzing the lowest unoccupied molecular orbital−highest occupied molecular orbital gaps calculated at the molecular level, we have highlighted the important role of the corresponding organic linkers in the MOF band gap. In particular, the change of C−C−CO dihedral angle in the organic linker can be used to analyze the difference of band gaps in MOF crystals. It is shown that a deep understanding of chemical bonding within linker molecules from electronic structure calculations plays a crucial role in designing semiconductor properties of MOF materials for engineering applications.
منابع مشابه
Effects of ultrasound on properties of ni-metal organic framework nanostructures
Objective(s): According to the unique properties of magnetic nanoparticles, Nickel Metal-Organic Frameworks (MOF) was synthesized successfully by ultrasound irradiation. Metal-organic frameworks (MOFs) are organic–inorganic hybrid extended networks that are constructed via covalent linkages between metal ions/metal clusters and organic ligands called a linker. Materials and Methods: The nanopar...
متن کاملHalogenated Graphdiyne and Graphyne Single Layers: A Systematic Study
Graphyne and graphdiyne families of flat carbon (sp2/sp) networks with high degrees of π-conjunction are attracting much attention due to their promising electronic, optical, and mechanical properties. In the present investigation we have studied the structural, mechanical, electrical and optical properties of halogenated graphdiyne and graphyne. The optical spectra of pure and halog...
متن کاملRecent Advances in Crystal Engineering from Nanoscience Views: A Brief Review
Crystal engineering has recently emerged as a method of choice for the design and construction of organic as well as metal-organic functional materials. Crystal engineering attempts to establish packing trends in whole families of compounds and seeks to establish connections between structure and function. The utility of crystal engineering has also been expanded to the nanoscience and the deve...
متن کاملTheoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials.
Metal-organic frameworks (MOFs) are promising materials for applications such as separation, catalysis, and gas storage. A key indicator of their structural stability is the shear modulus. By density functional theory calculations in a 106-atom supercell, under the local density approximation, we find c(11)=29.2 GPa and c(12)=13.1 GPa for Zn-based MOF 5. However, we find c(44) of MOF-5 to be ex...
متن کاملPorphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysis: band gap tuning via iron substitutions
Photocatalysts based on metal-organic frameworks (MOFs) are very promising due to a combination of high tuneability and convenient porous structure. Introducing porphyrin units within MOFs is a potential route to engineer these natural photosynthesis molecular catalysts into artificial photosynthesis heterogeneous catalysts. Using computer simulations based on density functional theory, we expl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014